Tailored radiation therapy: IMRT/Proton therpay

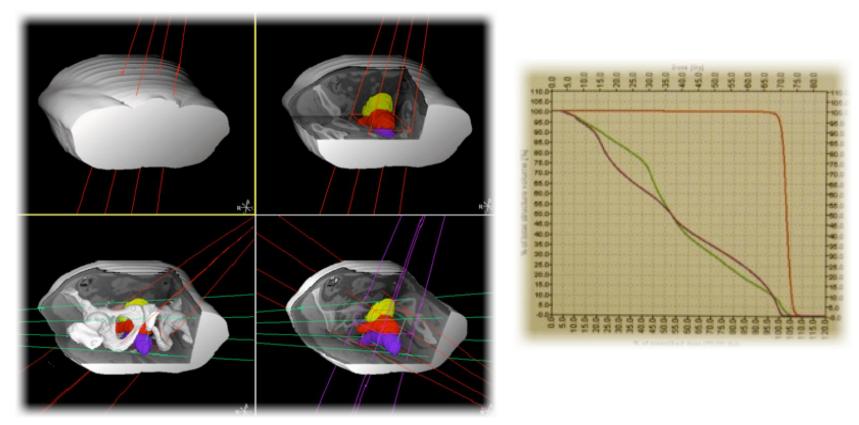
Won Park, M.D., Ph.D Department of Radiation Oncology Samsung Medical Center

Techniques in RT

Brachytherapy

Radioactive isotope

Accelerator


Tele-therapy

2D RT 3D CRT IMRT

3D Conformal RT

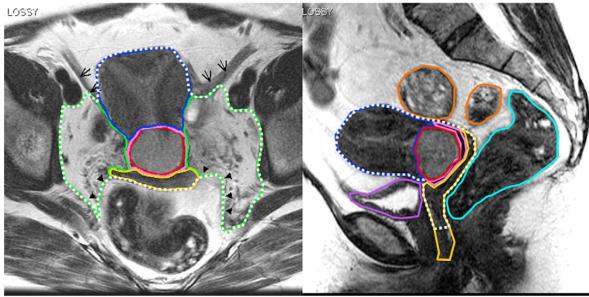
- Using CT images, multiple beam of various angle is arranged to irradiate
- DVH (Dose Volume Histogram) is useful to evaluate the dose distribution
- Irradiated dose to target volume and OAR is measureable quantitatively

Intensity Modulated RT Multi-Leaf Collimator Intensity Modulation

Use of intensity-modulated beams that can provide two or more intensity for any angle beam direction

- Generate concave dose distributions and dose gradients with narrow margins
- Increase tumor control through escalated dose and reduce normal tissue complication through organs at risk sparing

http://www.cancercenter.com/


IMRT survey in US

• IMRT utilization

	No. of academics	No. in private		
Variable	(%)	practice (%)	Total (%)	<i>P</i> value
Disease sites treated				
Genitourinary	28 (60.9)	119 (93.0)	147 (84.5)	< 0.01
Head and neck	35 (76.1)	105 (82.0)	140 (80.5)	0.38
Central nervous system	32 (70.0)	85 (66.4)	117 (67.2)	0.70
Gynecology	12 (26.1)	35 (27.3)	47 (27.0)	0.87
Breast	12 (26.1)	34 (26.6)	46 (26.4)	0.95
Gastrointestinal	13 (28.3)	33 (25.8)	46 (26.4)	0.74
Lung	12 (26.1)	20 (15.6)	32 (18.4)	0.12
Sarcoma	8 (17.4)	22 (17.2)	30 (17.2)	0.97
Pediatrics	14 (30.4)	8 (0.6)	22 (12.6)	< 0.01
Lymphoma	5 (10.9)	16 (12.5)	21 (12.1)	0.77
Other	3 (6.5)	2 (1.6)	3 (1.7)	0.08

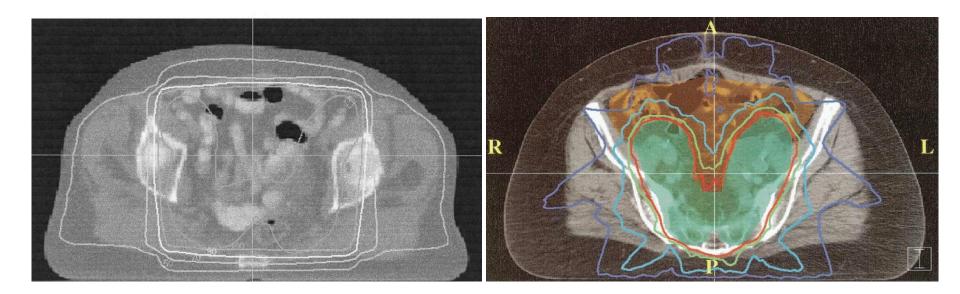
Target delineation

• RTOG consensus for definitive treatment

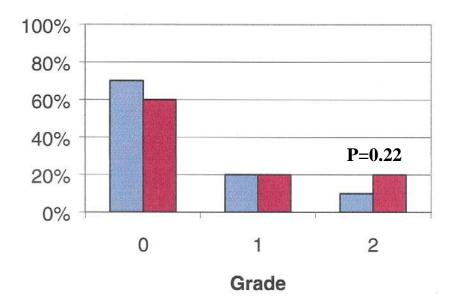
Clinical Target Volume

Pink: cervix
Blue: uterus
Yellow: vagina
Green: parametrium
Purple: bladder
Light blue: rectum
Orange: sigmoid
Dashed white line: CTV

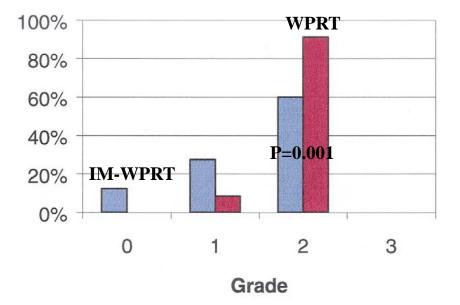
Red: GTV

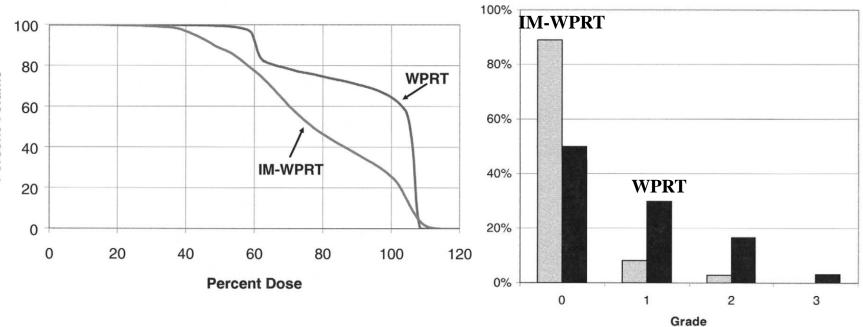

- Gross tumor
- Cervix: entire cervix
- Uterus: entire uterus

parametrium: entire parametrium, including ovaries


vagina: upper half to entire vagina according to tumor extent

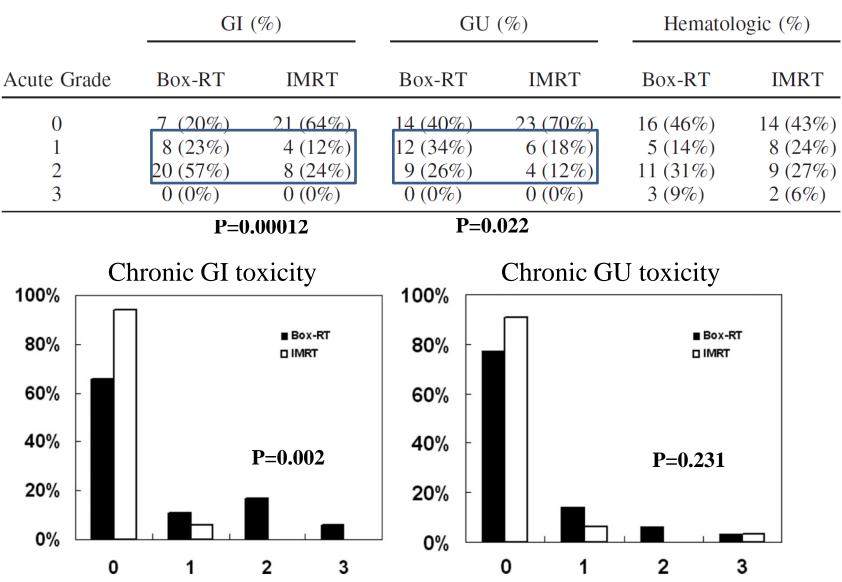
pelvic nodes: common, internal, external, obturator, presacral Lim et al. Int J Radiat Oncol Biol Phys 2010


- 40 gynecology patients, 2000-2001
- IM-WPRT 45 Gy + ICR 20-25 Gy to vaginal surface or 30-40 Gy to point A using LDR
- 35 previous treated conventional WPRT patients


Acute GU toxicity

Acute GI toxicity

Small Bowel


- 68 high risk cervix cancer patients, 2002-2006
- Hysterectomy, followed by CCRT
- 33 patients: IMRT

35 patients: Box-RT

	Rectum		Bladder		Small intestine			
	Box-RT	IMRT		Box-RT	IMRT	Box-RT	IMRT	
$\begin{array}{c} V_{100\%} \ (\%) \\ V_{90\%} \ (\%) \end{array}$		$34 \pm 16 \\ 58 \pm 16 \\ 83 \pm 14$	p < 0.001	$52.84 \pm 0.9 97 \pm 3 99 \pm 1 99.5 \pm 0.5 99.9 \pm 0.1$	70 ± 18 89 ± 10	53 ± 25	4 ± 3 12 ± 6 35 ± 11	p < 0.001

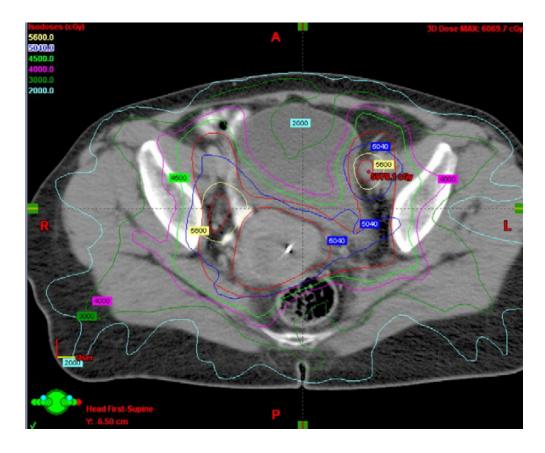
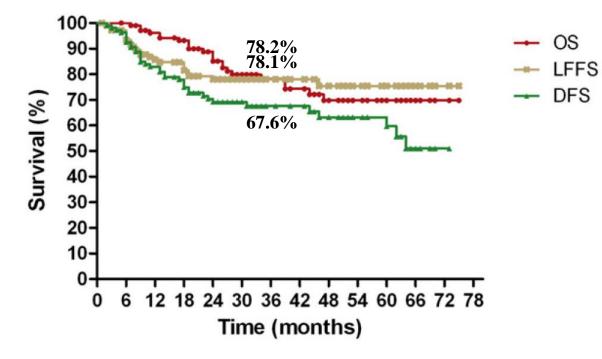

Table 4. Summary of dose-volume histogram statistics for rectum, bladder, and small intestine

Table 2. Acute toxicities in Box-RT and IMRT patients



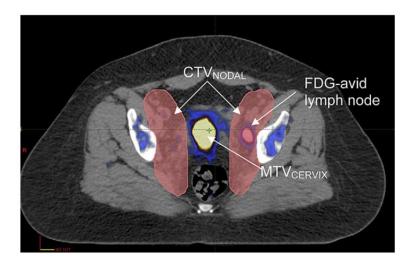
Chen et al. Int J Radiat Oncol Biol Phys 2007

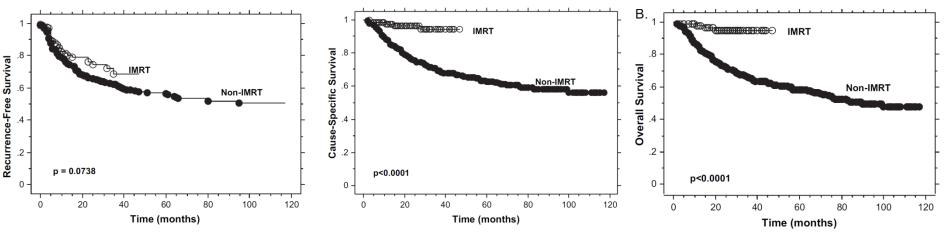
- Taiwan, 2004-2008
- 109 stage IB2 IVA cervical cancer patients
- IMRT and HDR of 20-33.5 Gy with concurrent cisplatin-based CTx

IMRT 50.4-54 Gy to GTV concomittant IMRT boost to 54-60 Gy to involved LNs 45-48 Gy to CTV

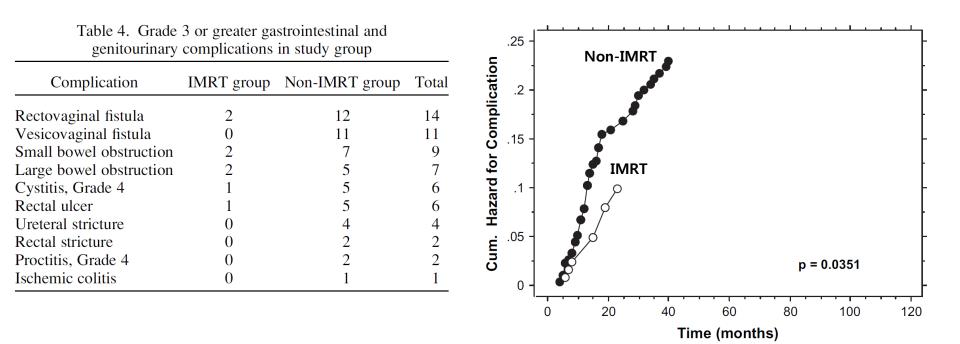
Late side effect of IMRT with concurrent chemotherapy (n = 109).

	GI system	GU system	Vagina	Lymphedema
Grade 1	5	1	0	1
2	8	2	0	0
3	1 4.5%	3 6.4%	0	0
4	4	4	1	0
Total	18	10	1	1

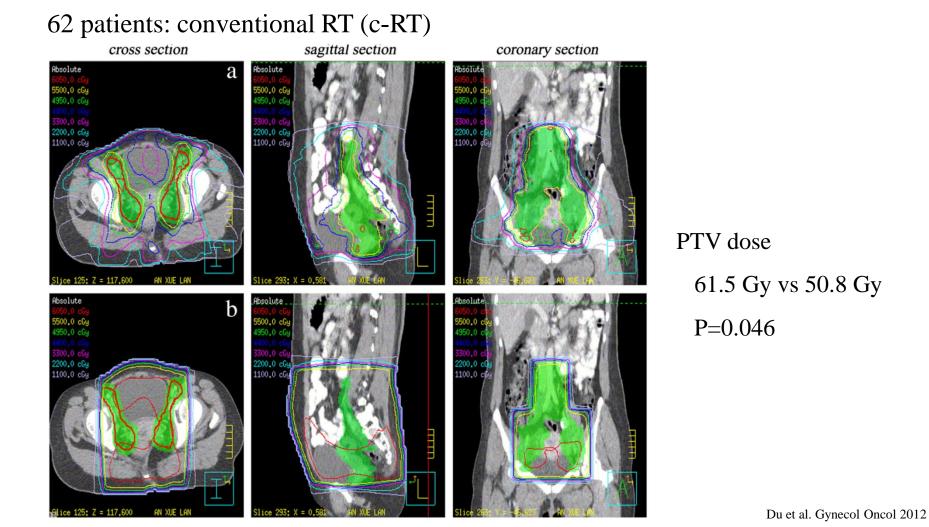

- Cervix cancer with definitive intent, 1997-2008, Washington University
- 135 IMRT patients (2005-)

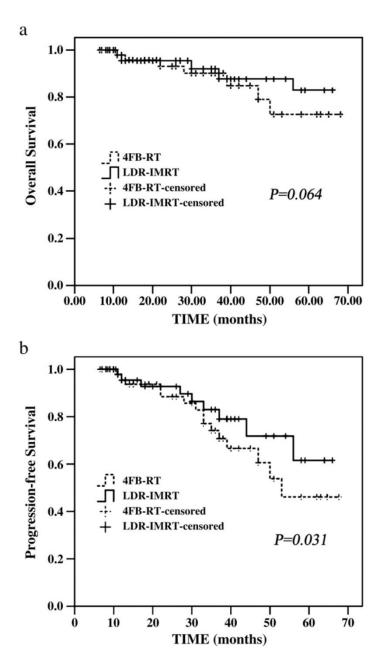

317 non-IMRT patients (1997-2004)

• 50 Gy whole pelvis + 20 Gy central pelvis


+ brachytherapy

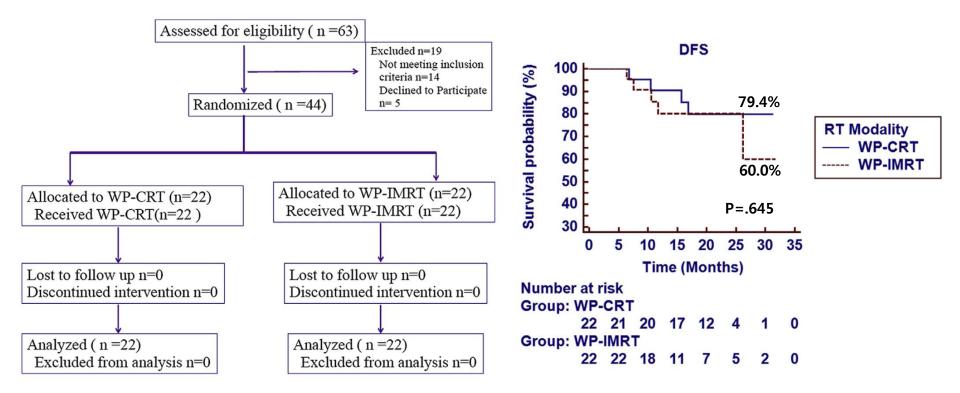
Recurrence	IMRT	Non-IMRT	Total	p Value
Overall	39 (28.9%)	139 (43.8%)	178	0.036
Pelvic	11 (8.1%)	33 (10.4%)	44	
Distant	21 (15.6%)	78 (24.6%)	99	
Both	7 (5.2%)	28 (8.8%)	35	





Kidd et al. Int J Radiat Oncol Biol Phys 2010

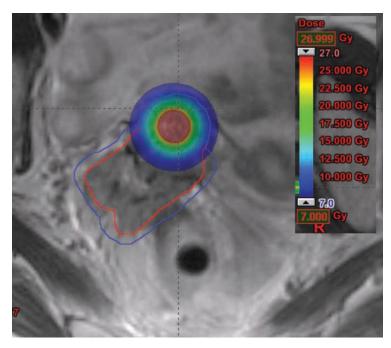
- IIB-IIIB cervix cancer, 2005-2010, Shandong Cancer Hospital
- 60 patients: reduced field IMRT (RF-IMRT)

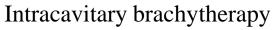


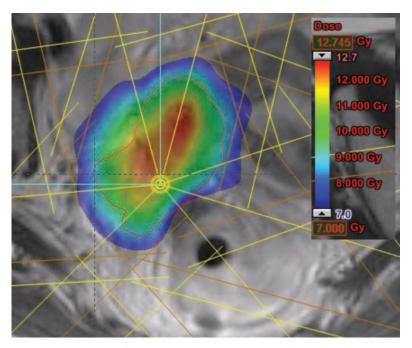
Chronic toxicities						
Grade	RF-IMRT group $(n=57)$	c-RT group $(n=60)$	P value			
Enterocolitis			0.017			
0	32 (56.1%)	20 (33.3%)				
1	17 (29.8%)	11 (18.3%)				
2	8 (14.1%)	18 (30.0%)				
3	0 (0%)	8 (13.4%)				
4	0 (0%)	3 (5.0%)				
5	0 (0%)	0 (0%)				
Cystitis			0.044			
0	41 (71.9%)	29 (48.4%)				
1	11 (19.3%)	11 (18.3%)				
2	5 (8.8%)	11 (18.3%)				
3	0 (0%)	6 (10.0%)				
4	0 (0%)	3 (5.0%)				
5	0 (0%)	0 (0%)				

Du et al. Gynecol Oncol 2012

- Prospective randomized trial, India
- Cervix cancer, 2010-2012, 44 patients, IIB-IIIB

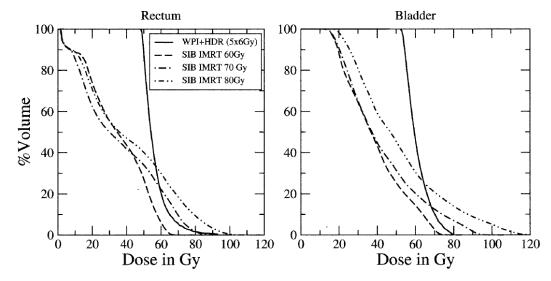



Table 2 Dose-volume histogram characteristics for target coverage and OARs						
Characteristic	WP-CRT arm	WP-IMRT arm	P value			
Mean CTV D ₉₅ , Gy	51.95 ± 0.85	51.26 ± 0.28	.42			
Mean CTV Nodal D ₉₅ , Gy	52.01 ± 1.1	51.52 ± 0.26	.243			
Mean PTV D ₉₅ , Gy	49.44 ± 4.37	50.68 ± 0.40	.438			
Mean rectum V_{40} , % volume	98.37 ± 4.58	42 ± 2.78	.0001			
Mean bladder V_{40} , % volume	97.54 ± 3.78	42.44 ± 2.74	.0001			
Mean small bowel V_{40} , % volume	61.21 ± 14.63	31.66 ± 3.56	.001			
Mean small bowel V_{90} , volume in cm ³	417.54 ± 42.16	199.89 ± 47.08	.005			
Mean small bowel V_{100} , volume in cm ³	336.22 ± 37.88	102.47 ± 29.09	.001			
Mean bone marrow V_{10} , % volume	99.44 ± 2.85	96.05 ± 3.61	.619			
Mean bone marrow V ₂₀ , % volume	98.95 ± 3.71	87.24 ± 4.70	.618			


Table 3 Acute gastrointestinal and genitourinary toxicity in WP-CRT and WP-IMRT arms

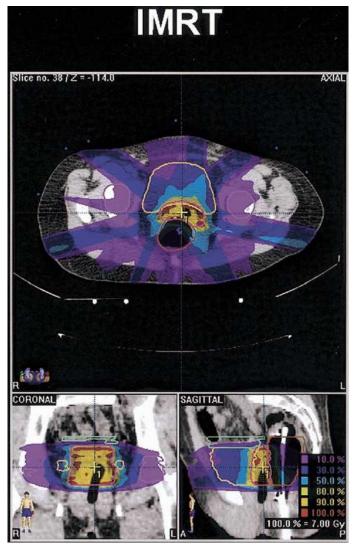
Toxicity	WP-CRT arm, n (%)	WP-IMRT arm, n (%)	P value	Effect size	95% CI of the difference
Vomiting grade ≥ 2	8 (36.4)	2 (9.1)	.034	0.273	0.016 to 0.521
Vomiting grade ≥ 3	1 (4.5)	1 (4.5)	.756	0	-0.135 to 0.131
GI grade ≥ 2	14 (63.6)	7 (31.8)	.034	0.318	0.002 to 0.604
GI grade ≥ 3	6 (27.3)	1 (4.5)	.047	0.228	0.003 to 0.447
GU grade ≥ 2	7 (31.8)	5 (23.8)	.404	0.08	-0.202 to 0.361
GU grade ≥ 3	3 (13.6)	0 (0)	.125	0.136	-0.019 to 0.291

- Brachytherapy: excellent efficacy and tolerance
- IMRT could provide a potential fallback for patients unable or unwilling to receive brachytherapy
- Multiple dosimetric studies suggest IMRT boost is feasible
- Clinical outcome data is limited



IMRT boost plan

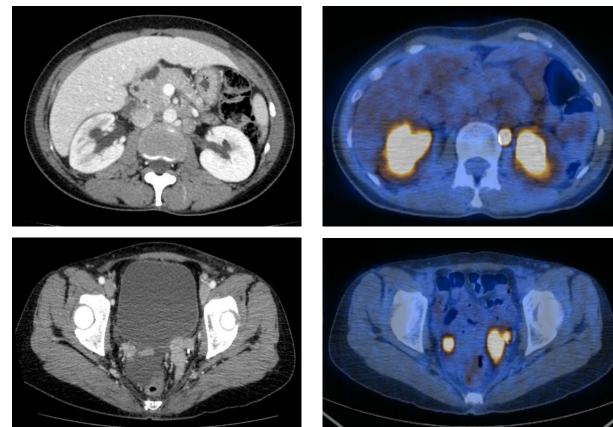
- IMRT Simultaneous Integrated Boost (SIB)
- SIB boost
 - 45 Gy in 1.8 Gy fractions (whole pelvis)


- 77.5 Gy in 3.1 Gy fractions (GTV)

- Radiobiologically equivalent to 45 Gy whole pelvic RT + 30 Gy brachytherpay
- Sparing of bladder and rectum is significantly improved with SIB
- SIB treatment can reduce the treatment time to 5 weeks

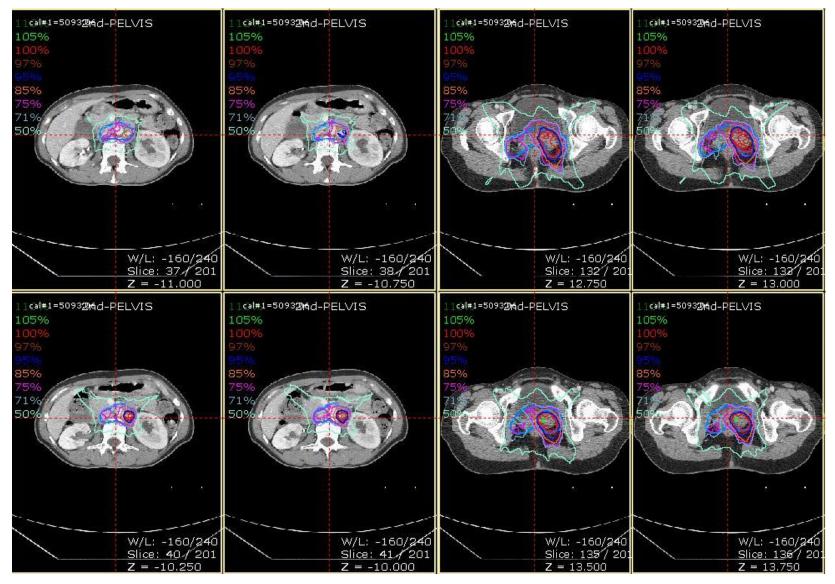
- Fractionated Stereotactic RT boost
- 16 patients with endometrial or cervical cancer
- Treated with final boost to the areas at higher risk for relapse
- Hypofractionated boost (IMRT)
 - Intact uterus 7 Gy X 2 fractions (4-7 days interval)
 - postoperative 4 Gy X 5 fractions (2-3 days interval)
- Body stereotactic RT system
- Rectal balloon for internal immobilization

• Fractionated Stereotactic RT boost


- Median follow-up 12.6 months
- 93% local control
- No \geq grade 3 acute toxicity
- 1/16 (6%) grade ≥ 2 late GI toxicity

Case

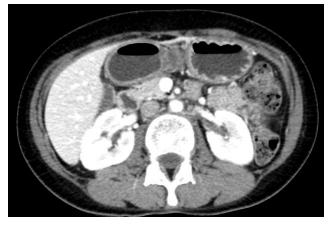
• 35/F, recurrent cervix cancer -> salvage RT

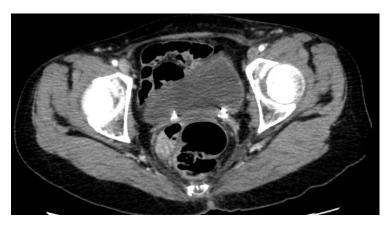

2010. 7 RH with PLND, FIGO IB, 1.9cm, > half, LVI(+) -> RTx refusal

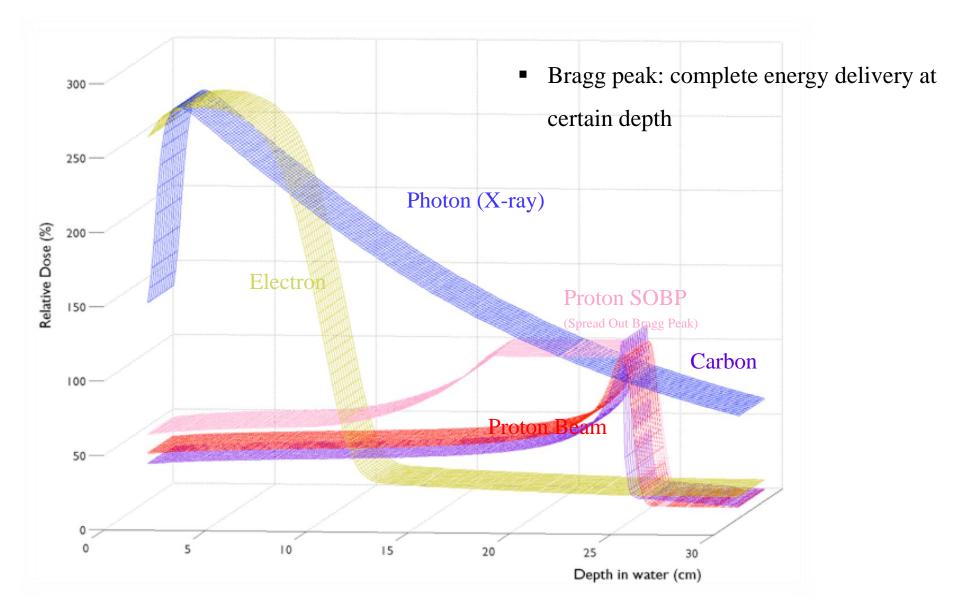
2011.12 multiple pelvic and RPLN recurrence

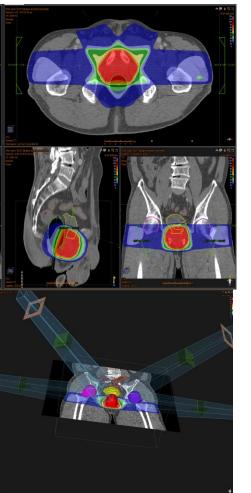
Case

2011.12-2012.1 salvage IMRT SIB 60Gy/25frs to pelvis and RPLN


Case

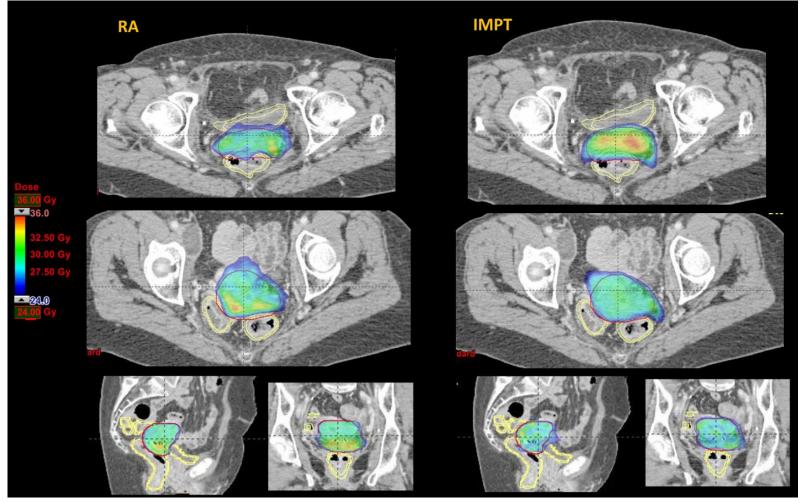

Post-RT 6months

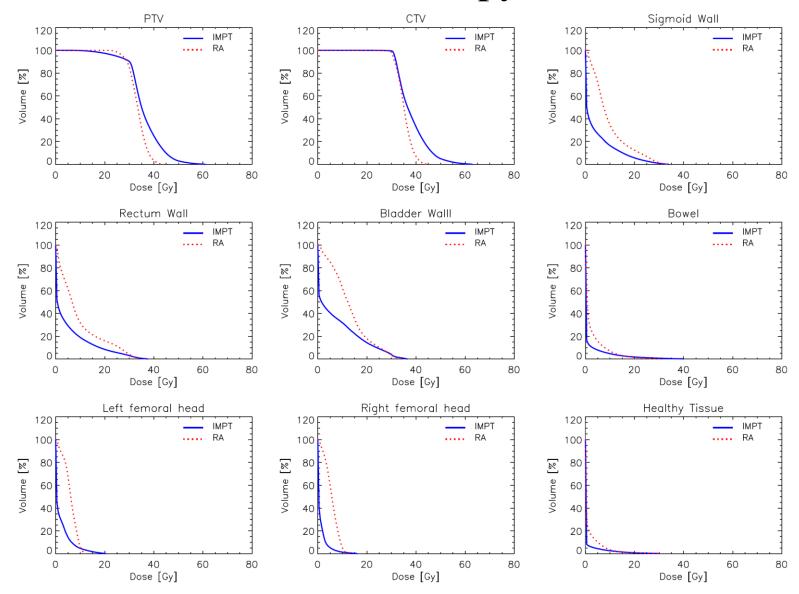


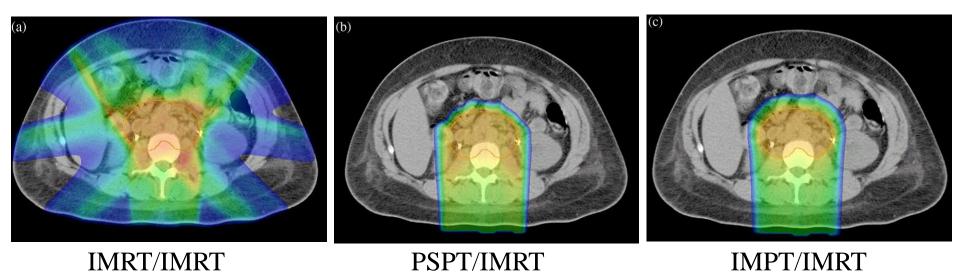

Post-RT 2yr 4months

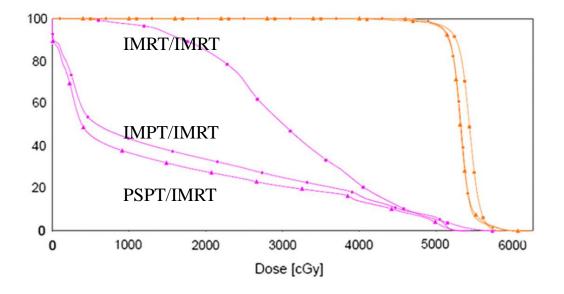
3D CRT

IMRT




Proton


prostate cancer, liver cancer, head and neck cancer, pediatric tumor, brain tumor, sarcoma Re-RT.....


- Cervix cancer, 11 patients who were unable to undergo brachytherapy
- whole pelvic RT 50.4 Gy + IMPT boost 6 Gy x 5 frs

- Gynecologic cancer, 10 consecutive patients
- IMRT, IMPT, PSPT (passive scattering proton therapy) planning comparison
- IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT) IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT)

Table 3	Dose-volume	histogram	comparisons	for the	small bowel

Small bowel	IMRT/IMRT	PSPT/IMRT	p value IMRT/PSPT vs. IMRT/IMRT	IMPT/IMRT	<i>p</i> value IMRT/IMPT vs. IMRT/IMRT
Mean, Gy (RBE)	32.7 ± 5.3	22 ± 8.4	< 0.001	23.4 ± 8.4	< 0.001
V ₅₀	14.7 ± 11.9	13.8 ± 11.9	0.5	15.1 ± 10.5	0.8
V_{45}	24.4 ± 14.4	23.0 ± 14.1	0.2	24.3 ± 14.4	0.9
V_{40}	32.8 ± 16.1	29.1 ± 16.0	0.01	36.2 ± 19.5	0.5
V ₃₅	42.0 ± 16.3	34.3 ± 16.8	0.001	41.9 ± 19.1	1
V ₃₀	53.3 ± 15.3	38.7 ± 17.1	< 0.001	46.8 ± 18.2	0.3
V ₂₀	82.5 ± 11.9	49.7 ± 19.3	< 0.001	56.0 ± 16.7	0.001

Clinical trials

• On going

RTOG 1203

Phase 3

281 enrollment

"A Randomized Phase III Study of Standard vs. IMRT Pelvic Radiation for Post-

Operative Treatment of Endometrial and Cervical Cancer"

Objective

primary: acute gastrointestinal toxicity

secondary: late GI, GU, hematologic toxicity

loco-regional control, disease-free survival, overall survival

https://clinicaltrials.gov/

Clinical trials

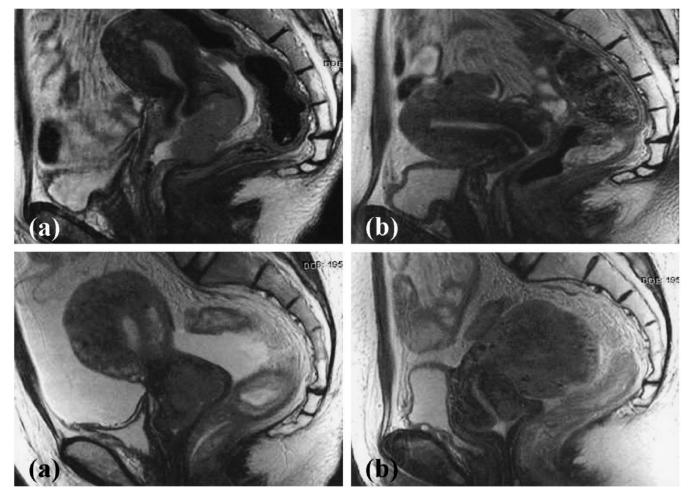
• On going

MGH

Pilot study

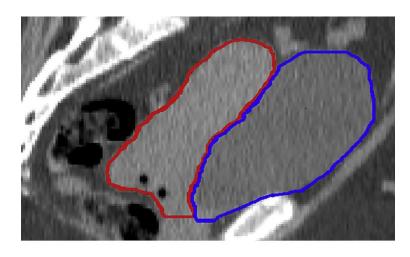
30 enrollment

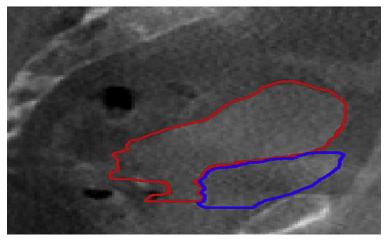
"Proton Beam Teletherapy for Post-Hysterectomy Cancers of the Uterus and Cervix"

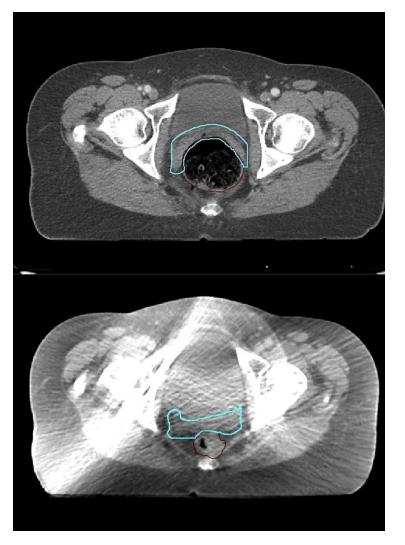

Objective

primary: acute and late side effects secondary: QOL, progression-free survival

https://clinicaltrials.gov/

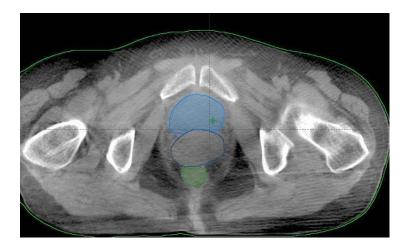

Considerations for IMRT/Proton therapy


- volume reduction during RT
- unpredictably target movement during RT



Considerations for IMRT/Proton therapy

• Internal organ volume change



Adaptive IMRT

- Current work focused on using daily volumetric imaging to adapt IMRT
- Daily imaging addresses concerns of inter-fraction organ motion of the target
- Multiple software tools required
 - automated segmentation: labor-intensive contouring
 - deformable registration: cumulative DVHs
- Cone-beam CT image are sufficient for adaptive IMRT for most patients

avoid bladder and rectum based on daily CBCT images
addresses tumor shrinkage and

inter-fraction organ motion

Summary

-IMRT is a better technique to reduce the delivery of dose to adjacent normal tissue such as rectum, bladder, small bowel, compared with 3D-CRT. However the clinical significances of treatment results are limited.

-Proton therapy for gynecologic cancer is investigational tool. Proton therapy can reduce the radiation exposure to normal tissue than IMRT.

-To do IMRT or Proton therapy for gynecologic cancer, we might be concerning about tumor regression or target movement during treatment.

-Prospective studies are needed to demonstrate the use of IMRT or proton therapy and provide important data on toxicity and survivals.

Thank you for your attention